Helping Fight Antibiotic Resistant Bacteria

Favorite
Helping Fight Antibiotic Resistant Bacteria
- -
A fungus living in the soils of Nova Scotia could offer new hope in the pressing battle against drug-resistant germs that kill tens of thousands of people every year, including one considered a serious global threat.

A team of researchers led by McMaster University has discovered a fungus-derived molecule, known as AMA, which is able to disarm one of the most dangerous antibiotic-resistance genes: NDM-1 or New Delhi Metallo-beta-Lactamase-1, identified by the World Health Organization as a global public health threat.

Bypassing the Spinal Cord.

Favorite
Bypassing the Spinal Cord.
- -
Ian Burkhart, a 23-year-old quadriplegic from Dublin, Ohio, is the first patient to use Neurobridge, an electronic neural bypass for spinal cord injuries that reconnects the brain directly to muscles, allowing voluntary and functional control of a paralyzed limb. Burkhart is the first of a potential five participants in a clinical study.

"It's much like a heart bypass, but instead of bypassing blood, we're actually bypassing electrical signals," said Chad Bouton, research leader at Battelle. "We're taking those signals from the brain, going around the injury, and actually going directly to the muscles."

Could We Make Humans Resistant to HIV?

Favorite
Could We Make Humans Resistant to HIV?
- -
The technique, which is still in experimental stages, takes advantage of a rare mutation that makes one percent of people of European descent resistant to HIV.

Using a new "genome editing" tool, researchers are hoping to be able to insert the mutation into the cells of other people - and they've already proved the basic principles work using induced pluripotent stem cells (iPSCs), Peter Aldhous reports for New Scientist.

The new genome editing technique is much more precise than tradition forms of genetic engineering, as it places a sequence of gene into a pre-designated area of the genome, rather than at random locations. By using this technique, researchers led by Yuet Kan from the University of California, San Francico, have managed to alter the genome of iPSCs, which can turn into any cell in the body. As predicted, when the scientists grew these iPSCs into white blood cells, they were resistant to HIV.